
Ease the rsyslog admin's life...
Rainer Gerhards

Never touch a running system

• Of course not, but sometimes you need to
• And if you need to, DON'T stick to outdated

versions!
• Many distros still ship v5, or even older

▫ Missing features (e.g. wildcards in imfile, json)
▫ Hard to get right config language
▫ Bad performance
▫ Long-solved bugs
▫ Very limited support by the rsyslog community

Make your life much easier:
Upgrade to current (v8.8 now)
• Of course, only if you need to touch the system
• Config will continue to work
• Adiscon has made packages available for support

customers, but everyone is free to use them
▫ RHEL/CentOS
▫ Debian
▫ Ubuntu

While we are at it:
rsyslog version numbering
• Traditionally [major].[minor].[increment]
• We now do 6-weekly releases and increment the

minor version
• Automatic testing has much improved, so all

numbered releases are stable
• Devel version available via git master branch and as

daily tarball/package
• Leads to much earlier availability of new features

Getting Help

• Community support
▫ latest stable and devel (daily build)
▫ Mailing list (suggested) or web forum
▫ Report confirmed issues and feature requests to github

issue tracker
• Professional Support

▫ via Adiscon, rsyslog's main sponsor (90%+)
▫ Any version supported (but we still suggest going

current)
▫ Guaranteed support with NDA no problem
▫ Includes development & consulting hours

The new configuration language

• Originally (~2007) we thought we would just need
few additional statements

• As it turned out, they became more and more
• What made things even worse is that they have strict

order requirements, not always intuitive
• Very hard to work with, very easy to get wrong
• So we had to settle for something better

This is what drove me crazy:

The "regular" logging...
mail.* /var/log/mail.log

$RuleSet remote10514
. /var/log/remote10514

$RuleSet remote10516
mail.* /var/log/mail10515
& ~
. /var/log/remote10515

$InputTCPServerBindRuleset remote10514
$InputTCPServerRun 10514

$InputTCPServerBindRuleset remote10515
$InputTCPServerRun 10515

• took me a while to
figure correct order

• change anything,
nothing will work :-)

• You need to be very
brave if you add things
like ruleset queues...

This is new style:
The "regular" logging...
mail.* /var/log/mail.log

ruleset(name="remote10514") {
 action(type="omfile" file="/var/log/remote10514")
}

ruleset(name="remote10515") {
 If prifilt("mail.*") then
 action(type="omfile" file="/var/log/mail10515")
 else
 action(type="omfile" file="/var/log/remote10515")
}

input(type="imtcp" port="10514" ruleset="remote10514")
input(type="imtcp" port="10515" ruleset="remote10515")

Or how about this one?
[from rsyslog mailing list]
$ActionQueueType LinkedList
$ActionQueueSize 100000
$ActionQueueDiscardMark 95000
$ActionQueueDiscardSeverity 0
$ActionQueueTimeoutEnqueue 0
$ActionQueueDequeueSlowdown 1000
$ActionQueueWorkerThreads 2
$ActionQueueDequeueBatchSize 128
$ActionResumeRetryCount -1

local4.* /var/log/ldap/ldap.log
local4.* @@somehost

• It adds a queue...
• … in front of the file

write action ...
• … but not when

forwarding to the
remote host!

In new style this would have been
obvious

local4.* {
 action(type="omfile" file="/var/log/ldap/ldap.log"
 queue.type="LinkedList" queue.size="100000"
 queue.discardMark="95000" queue.discardSeverity="0"
 queue.timeoutEnqueue="0" queue.dequeueSlowdown="0"
 queue.workerThreads="2" queue.dequeueBatchSize="128"
 action.resumeRetryCount="-1")
 action(type="omfwd" protocol="tcp" target="somehost")
}

You can mix old and new style

local4.* {
 /var/log/ldap/ldap.log
 action(type="omfwd" protocol="tcp" target="somehost"
 queue.type="LinkedList" queue.size="100000"
 queue.discardMark="95000" queue.discardSeverity="0"
 queue.timeoutEnqueue="0" queue.dequeueSlowdown="0"
 queue.workerThreads="2" queue.dequeueBatchSize="128"
 action.resumeRetryCount="-1")
}

Suggestion

• Old-style config is fine for simple things
▫ Simple is “mail.info /var/log/mail.log”
▫ Anything that requires parameters is NOT simple
▫ Rulesets (as on last side) is questionable

• Use new-Style for everything more complicated
▫ Note that some statements do not yet have new style

equivalents $IncludeConfig→
▫ Old configs still work, no need to migrate just to

upgrade

Writing plugins

• Traditionally, plugins
▫ Are written in C
▫ Macros hide interface plumbing
▫ Fairly easy to write for the C-literate
▫ Still perceived as “complicated”

• V8 goal
▫ Enable everyone to write plugins (sysadmins!)
▫ Support any language (Python, Perl, ...)
▫ Ability to execute security-sensitive plugin outside of

rsyslog security context

Writing plugins

• Traditionally, plugins
▫ Are written in C
▫ Macros hide interface plumbing
▫ Fairly easy to write for the C-literate
▫ Still perceived as “complicated”

• V8 goal
▫ Enable everyone to write plugins (sysadmins!)
▫ Support any language (Python, Perl, ...)
▫ Ability to execute security-sensitive plugin outside of

rsyslog security context

Types of Plugins

• Output (actions)
▫ Deliver message to some destination system, e.g. file,

ElasticSearch, MongoDB, Solr, ...
▫ Any language supported in v8.2.0+

• Message Modification Plugins (Modules)
▫ Permit on-the-fly modification of message content

(e.g. anonymization, credit card removal)
▫ Any language supported in v8.3.0+

• Input
▫ Accept input messages
▫ Currently on hold – syslog(3) is fine...

Ultra-quick tutorial for output
plugins...
• Choose any language you like
• Implement the pseudocode below

▫ Messages arrive via stdin, one message per line
▫ Read from stdin until EOF
▫ Process each message read as you like
▫ Terminate when EOF is reached

• That's it!

While not EOF(stdin) do {
 Read msg from stdin
 Process msg
}

Make rsyslog call plugin

• Regular filtering applies (as with any action)
• You can specify message format via a template
• Use omprog for the call

module(load="omprog") # needed only once in config!

if $rawmsg contains "sometrigger" then
 action(type="omprog"
 binary="/path/to/your/plugin")

A bit more detail:
Interface Overview

rsyslog
core

engine

Internal plugin

external plugin
connector

perl plugin

python plugin

process border

Interface Details: communication

• uses pipes
• stdin

▫ one message per line
▫ format can be customized via rsyslog templates
▫ multi-line messags via JSON

• stdout/stderr
▫ Must NOT be written in initial version
▫ Message modification module returns changes via

stdout [later also error state via stderr]
• Template specifies input format (with JSON

recommended for more complex cases)

Interface Details: Threading

• Do NOT care about threading
• Write app according to single-thread paradigm
• rsyslog will spawn multiple instances of your plugin

if there is need to do so
▫ Happens based on config in busy cases
▫ Works well in most cases (e.g. http connects)
▫ Can be disabled if necessary
▫ If your program can run in multiple ter-minal

sessions concurrently, it can also be run as
multiple rsyslog action instances.

Startup & Termination

• rsyslog will startup the plugin automatically
• Plugin needs to read stdin until EOF
• Do NOT terminate before EOF is reached
• On EOF, cleanup and terminate
• If the plugin dies, rsyslog restarts a new instance

Skeletons

• The rsyslog project provides sample plugin
skeletons

• Available in ./plugins/external/skeletons
• These contain

▫ some plumbing
▫ often a kind of abstraction layer to make writing

plugins even easier
▫ often performance-enhancement features

• Can simply be copied to create your own plugins,
don't care about the (minimal) plumbing!

External Plugins...

• Let's have a look at actual code...

Call to Action
• If you need to send logs to a destination that is not

yet supported, you can quickly write an external
plugin – in any language you know!

• Writing rsyslog plugins is easy
▫ If there is already a skeleton for your language, copy it

and add your app-specific code
▫ If not ... no problem, the interface is dumb easy

If you can write a script that reads stdin and does
something useful with it, you can also write a

rsyslog plugin!

impstats statistics module

• Provides insight into running instance
▫ Queue sizes
▫ File cache behavior
▫ Messages processed
▫ … and much more

• Reports
▫ Periodically
▫ To either regular syslog stream or local file

• Extremely useful for tuning and troubleshooting
(even health monitoring...)

Activating impstats

module(load="impstats"
 interval="600"
 severity="7"
 log.syslog="off"
 /* need to turn log stream logging off! */
 log.file="/path/to/local/stats.log")

A sample pstats file...

imudp(*:514): submitted=2327203
imptcp(*/5514/IPv4): submitted=0

main Q[DA]: size=0 enqueued=0 full=0 discarded.full=0 discarded.nf=0 maxqsize=0
main Q: size=67 enqueued=283 full=0 discarded.full=0 discarded.nf=0 maxqsize=67

imuxsock: submitted=7 ratelimit.discarded=0 ratelimit.numratelimiters=3

remote[DA]: size=1040 enqueued=1041 full=0 discarded.full=0 discarded.nf=0
maxqsize=1040
remote: size=7190 enqueued=2922166 full=0 discarded.full=0 discarded.nf=0
maxqsize=8176

dynafile cache file_Watchdog: requests=2913980 level0=2913979 missed=1 evicted=0
maxused=1

Web pstats analyzer

• Great to
gather some
quick insight

• Available from
the
www.rsyslog.
com
 homepage
(under tools)

http://www.rsyslog.com/
http://www.rsyslog.com/

Web pstats analyzer:
sample graph

The rsyslog doc project

• The doc just sucks... but a bit less now...
• In 2014 spawned a new project to create better one:

https://github.com/rsyslog/rsyslog-doc
• Initiated by James Boylan (a sysadmin)
• Please help

▫ Complain ;-)
▫ open issues
▫ Write some doc...

• We are especially interested to learn what is hard for
beginners!

https://github.com/rsyslog/rsyslog-doc

Log normalization

• PoC (liblognorm) available for some time now,
already has good results

• Now working on the “final version”
▫ Retain and improve realtime-capability
▫ Better rule base format
▫ Easier to use

• Will contain “simple log structure analyzer” (slsa)
▫ Statistical structure mining
▫ Goal: turn undetected messages into rules fast
▫ Also promising for anonymization

Call for log samples

• In order to move forward with the project, I am in
deep need for actual sample logs

• Please contribute
▫ Public would be great
▫ Under NDA also possible and appreciated!

• There is a bonus for you
▫ I help with the creation of rulebases for your current

environment (using liblognorm 1.x)
▫ In the future, you get a tool that semi-automatically

creates new rules for you (plus an even better
normalization algo!)

Questions?

rgerhards@adiscon.com

Please contribute Logs!!!

mailto:rgerhards@adiscon.com

	rsyslog futures
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34

