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Never touch a running system

• Of course not, but sometimes you need to
• And if you need to, DON'T stick to outdated 

versions!
• Many distros still ship v5, or even older

▫ Missing features (e.g. wildcards in imfile, json)
▫ Hard to get right config language
▫ Bad performance
▫ Long-solved bugs
▫ Very limited support by the rsyslog community



Make your life much easier: 
Upgrade to current (v8.8 now)
• Of course, only if you need to touch the system
• Config will continue to work
• Adiscon has made packages available for support 

customers, but everyone is free to use them
▫ RHEL/CentOS
▫ Debian
▫ Ubuntu





While we are at it:
rsyslog version numbering
• Traditionally  [major].[minor].[increment]
• We now do 6-weekly releases and increment the 

minor version
• Automatic testing has much improved, so all 

numbered releases are stable
• Devel version available via git master branch and as 

daily tarball/package
• Leads to much earlier availability of new features



Getting Help

• Community support
▫ latest stable and devel (daily build)
▫ Mailing list (suggested) or web forum
▫ Report confirmed issues and feature requests to github 

issue tracker
• Professional Support

▫ via Adiscon, rsyslog's main sponsor (90%+)
▫ Any version supported (but we still suggest going 

current)
▫ Guaranteed support with NDA no problem
▫ Includes development & consulting hours



The new configuration language

• Originally (~2007) we thought we would just need 
few additional statements

• As it turned out, they became more and more
• What made things even worse is that they have strict 

order requirements, not always intuitive
• Very hard to work with, very easy to get wrong
• So we had to settle for something better



This is what drove me crazy:

# The "regular" logging...
mail.*  /var/log/mail.log

$RuleSet remote10514
*.*     /var/log/remote10514

$RuleSet remote10516
mail.*  /var/log/mail10515
&       ~
*.*     /var/log/remote10515

$InputTCPServerBindRuleset remote10514
$InputTCPServerRun 10514

$InputTCPServerBindRuleset remote10515
$InputTCPServerRun 10515

• took me a while to 
figure correct order 

• change anything, 
nothing will work :-)

• You need to be very 
brave if you add things 
like ruleset queues...



This is new style:
# The "regular" logging...
mail.*  /var/log/mail.log

ruleset(name="remote10514") {
   action(type="omfile" file="/var/log/remote10514")
}

ruleset(name="remote10515") {
   If prifilt("mail.*") then  
        action(type="omfile" file="/var/log/mail10515")
   else
       action(type="omfile" file="/var/log/remote10515")
}

input(type="imtcp" port="10514" ruleset="remote10514")
input(type="imtcp" port="10515" ruleset="remote10515")



Or how about this one?
[from rsyslog mailing list]
$ActionQueueType LinkedList
$ActionQueueSize 100000
$ActionQueueDiscardMark 95000
$ActionQueueDiscardSeverity 0
$ActionQueueTimeoutEnqueue 0
$ActionQueueDequeueSlowdown 1000
$ActionQueueWorkerThreads 2
$ActionQueueDequeueBatchSize 128
$ActionResumeRetryCount -1

local4.*  /var/log/ldap/ldap.log
local4.*  @@somehost

• It adds a queue...
• … in front of the file 

write action ...
• … but not when 

forwarding to the 
remote host!



In new style this would have been 
obvious

local4.* {
    action(type="omfile" file="/var/log/ldap/ldap.log"
               queue.type="LinkedList" queue.size="100000"
               queue.discardMark="95000" queue.discardSeverity="0"
               queue.timeoutEnqueue="0" queue.dequeueSlowdown="0"
               queue.workerThreads="2" queue.dequeueBatchSize="128"
               action.resumeRetryCount="-1") 
   action(type="omfwd" protocol="tcp" target="somehost")
}



You can mix old and new style

local4.* {
    /var/log/ldap/ldap.log
    action(type="omfwd" protocol="tcp" target="somehost"
               queue.type="LinkedList" queue.size="100000"
               queue.discardMark="95000" queue.discardSeverity="0"
               queue.timeoutEnqueue="0" queue.dequeueSlowdown="0"
               queue.workerThreads="2" queue.dequeueBatchSize="128"
               action.resumeRetryCount="-1") 
}



Suggestion

• Old-style config is fine for simple things
▫ Simple is “mail.info /var/log/mail.log”
▫ Anything that requires parameters is NOT simple
▫ Rulesets (as on last side) is questionable

• Use new-Style for everything more complicated
▫ Note that some statements do not yet have new style 

equivalents  $IncludeConfig→
▫ Old configs still work, no need to migrate just to 

upgrade



Writing plugins

• Traditionally, plugins
▫ Are written in C
▫ Macros hide interface plumbing
▫ Fairly easy to write for the C-literate
▫ Still perceived as “complicated”

• V8 goal
▫ Enable everyone to write plugins (sysadmins!)
▫ Support any language (Python, Perl, ...)
▫ Ability to execute security-sensitive plugin outside of 

rsyslog security context
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Types of Plugins

• Output (actions)
▫ Deliver message to some destination system, e.g. file, 

ElasticSearch, MongoDB, Solr, ...
▫ Any language supported in v8.2.0+

• Message Modification Plugins (Modules)
▫ Permit on-the-fly modification of message content 

(e.g. anonymization, credit card removal)
▫ Any language supported in v8.3.0+

• Input
▫ Accept input messages
▫ Currently on hold – syslog(3) is fine...



Ultra-quick tutorial for output 
plugins...
• Choose any language you like
• Implement the pseudocode below

▫ Messages arrive via stdin, one message per line
▫ Read from stdin until EOF
▫ Process each message read as you like
▫ Terminate when EOF is reached

• That's it!

While not EOF(stdin) do {
    Read msg from stdin
    Process msg
}



Make rsyslog call plugin

• Regular filtering applies (as with any action)
• You can specify message format via a template
• Use omprog for the call

module(load="omprog") # needed only once in config!

if $rawmsg contains "sometrigger" then
   action(type="omprog"
          binary="/path/to/your/plugin")



A bit more detail:
Interface Overview

rsyslog
core

engine

Internal plugin

external plugin
connector

perl plugin

python plugin

process border



Interface Details: communication

• uses pipes
• stdin

▫ one message per line
▫ format can be customized via rsyslog templates
▫ multi-line messags via JSON

• stdout/stderr
▫ Must NOT be written in initial version
▫ Message modification module returns changes via 

stdout [later also error state via stderr]
• Template specifies input format (with JSON 

recommended for more complex cases)



Interface Details: Threading

• Do NOT care about threading
• Write app according to single-thread paradigm
• rsyslog will spawn multiple instances of your plugin 

if there is need to do so
▫ Happens based on config in busy cases
▫ Works well in most cases (e.g. http connects)
▫ Can be disabled if necessary
▫ If your program can run in multiple ter-minal 

sessions concurrently, it can also be run as 
multiple rsyslog action instances.



Startup & Termination

• rsyslog will startup the plugin automatically
• Plugin needs to read stdin until EOF
• Do NOT terminate before EOF is reached
• On EOF, cleanup and terminate
• If the plugin dies, rsyslog restarts a new instance



Skeletons

• The rsyslog project provides sample plugin 
skeletons

• Available in ./plugins/external/skeletons
• These contain

▫ some plumbing
▫ often a kind of abstraction layer to make writing 

plugins even easier
▫ often performance-enhancement features

• Can simply be copied to create your own plugins, 
don't care about the (minimal) plumbing!



External Plugins...

• Let's have a look at actual code...



Call to Action
• If you need to send logs to a destination that is not 

yet supported, you can quickly write an external 
plugin – in any language you know!

• Writing rsyslog plugins is easy
▫ If there is already a skeleton for your language, copy it 

and add your app-specific code
▫ If not ... no problem, the interface is dumb easy

If you can write a script that reads stdin and does 
something useful with it, you can also write a 

rsyslog plugin!



impstats statistics module

• Provides insight into running instance
▫ Queue sizes
▫ File cache behavior
▫ Messages processed
▫ … and much more

• Reports
▫ Periodically
▫ To either regular syslog stream or local file

• Extremely useful for tuning and troubleshooting 
(even health monitoring...)



Activating impstats

module(load="impstats"
       interval="600"
       severity="7"
       log.syslog="off"
       /* need to turn log stream logging off! */
       log.file="/path/to/local/stats.log")



A sample pstats file...

imudp(*:514): submitted=2327203 
imptcp(*/5514/IPv4): submitted=0 

main Q[DA]: size=0 enqueued=0 full=0 discarded.full=0 discarded.nf=0 maxqsize=0 
main Q: size=67 enqueued=283 full=0 discarded.full=0 discarded.nf=0 maxqsize=67 

imuxsock: submitted=7 ratelimit.discarded=0 ratelimit.numratelimiters=3 

remote[DA]: size=1040 enqueued=1041 full=0 discarded.full=0 discarded.nf=0 
maxqsize=1040 
remote: size=7190 enqueued=2922166 full=0 discarded.full=0 discarded.nf=0 
maxqsize=8176 

dynafile cache file_Watchdog: requests=2913980 level0=2913979 missed=1 evicted=0 
maxused=1 



Web pstats analyzer

• Great to 
gather some 
quick insight

• Available from 
the 
www.rsyslog.
com
 homepage 
(under tools)

http://www.rsyslog.com/
http://www.rsyslog.com/


Web pstats analyzer:
sample graph



The rsyslog doc project

• The doc just sucks... but a bit less now...
• In 2014 spawned a new project to create better one: 

https://github.com/rsyslog/rsyslog-doc
• Initiated by James Boylan (a sysadmin)
• Please help

▫ Complain ;-)
▫ open issues
▫ Write some doc...

• We are especially interested to learn what is hard for 
beginners!

https://github.com/rsyslog/rsyslog-doc


Log normalization

• PoC (liblognorm) available for some time now, 
already has good results

• Now working on the “final version”
▫ Retain and improve realtime-capability
▫ Better rule base format
▫ Easier to use

• Will contain “simple log structure analyzer” (slsa)
▫ Statistical structure mining
▫ Goal: turn undetected messages into rules fast
▫ Also promising for anonymization



Call for log samples

• In order to move forward with the project, I am in 
deep need for actual sample logs

• Please contribute
▫ Public would be great
▫ Under NDA also possible and appreciated!

• There is a bonus for you
▫ I help with the creation of rulebases for your current 

environment (using liblognorm 1.x)
▫ In the future, you get a tool that semi-automatically 

creates new rules for you (plus an even better 
normalization algo!)



Questions?

rgerhards@adiscon.com

Please contribute Logs!!!

mailto:rgerhards@adiscon.com
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